skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, HuanYu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available November 1, 2026
  4. Free, publicly-accessible full text available April 2, 2026
  5. Abstract Skin‐like robust materials with prominent sensing performance have potential applications in flexible bioelectronics. However, it remains challenging to achieve mutually exclusive properties simultaneously including low interfacial impedance, high stretchability, sensitivity, and electrical resilience. Herein, a material and structure design concept of mixed ion‐electron conduction and mechanical interlocking structure is adopted to fabricate high‐performance mechanical‐bioelectrical dual‐modal composites with large stretchability, excellent mechanoelectrical stability, low interfacial impedance, and good biocompatibility. Flower‐like conductive metal‐organic frameworks (cMOFs) with enhanced conductivity through the overlapped level of metal‐ligand orbital are assembled, which bridge carbon nanotubes (denoted as cMOFs‐b‐CNTs). Then, precursor of poly(styrene‐block‐butadiene‐block‐styrene)/ionic liquid penetrates the pores and cavities in cMOFs‐b‐CNTs‐based network fabricated via filtration process, creating a semi‐embedded structure via mechanical interlocking. Thus, the mixed ion‐electron conduction and semi‐embedded structure endow the as‐prepared composites with a low interfacial impedance (51.60/28.90 kΩ at 10/100 Hz), wide sensing range (473%), high sensitivity (2195.29), rapid response/recovery time (60/85 ms), low limit of detection (0.05%), and excellent durability (>5000 cycles to 50% strain). Demonstrations of multifunctional mechanical‐bioelectrical dual‐modal sensors for in vivo/vitro monitoring physiological motions, electrophysiological activities, and urinary bladder activities validate the possibility for practical uses in biomedical research areas. This concept creates opportunities for the construction of durable skin‐like sensing materials. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  6. Free, publicly-accessible full text available April 18, 2026
  7. Free, publicly-accessible full text available April 9, 2026
  8. A chemically modified DNAzyme-based electrochemical sensor was developed for binary and highly sensitive detection of reactive oxygen species. 
    more » « less
    Free, publicly-accessible full text available February 19, 2026
  9. Abstract The cost‐effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low‐cost fabrication approach to directly create and pattern crumpled porous graphene/NiS2nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre‐strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS2nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform. By leveraging the electrical energy harvested from the kinetic motion from wearable triboelectric nanogenerator (TENG) and stored in micro‐supercapacitor arrays (MSCAs) to drive biophysical sensors, the system is demonstrated to monitor human motions, body temperature, and toxic gas in the exposed environment. The material selections, design strategies, and fabrication approaches from this study provide functional nanomaterial composites with tunable properties for future high‐performance bio‐integrated electronics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  10. Free, publicly-accessible full text available January 14, 2026